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Abstract

This paper presents a detailed discussion of Markov parameters in system identification.
Different forms of input-output representation of linear discrete-time systems are reviewed and
discussed. Interpretation of sampled response data as Markov parameters is presented. Relations
between the state-space model and particular linear difference models via the Markov parameters
are formulated. A generalization of Markov parameters to observer and Kalman filter Markov
parameters for system representation and identification is explained. These extended Markov
parameters play an important role in providing not only a state-space realization, but also an
observer/Kalman filter for the system of interest.

1. Introduction

The basic objective of system identification is to develop a mathematical model of a physical

system by observing its input-output relationship. A mathematical model of a system is required
for many purposes, e.g., system analysis or controller design. Often in practice, one concerns
with linear models since many physical systems can be described by linear or approximately linear
equations. For a given linear system, there are several models that can be used to describe the
input-output characteristics of that system. Depending on intended application, one type of model
may be preferred over another. Since different types of models all describe the same system, they
must be related in a fundamental way. The relationship between different model structures can be
described in terms of the Markov parameters, which can be used to describe the system input-

output map in various ways. Despite the mathematical connotation attached to its name, the
Markov parameters are simply the pulse response functions of a discrete system to a unit pulse
input. This paper is an overview of Markov parameters commonly encountered in system
identification theory.

The outline of this paper is as follows. The paper starts with a review of different ways to
describe the input-output relationship of a linear system. This is standard material, which can be
found in various texts. 1_ The relationship between the Markov parameters and these different

descriptions is discussed. The observer equation can also be used to describe the system input-
output relation. The relationship between the Markov parameters of an observer and the Markov
parameters of the system is presented. This connection is particularly important since it serves as
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thebasicfoundationfor severalrecentlydevelopedsystemidentificationmethods,5-11includingthe
Observer/Kalmanfilter Identification algorithm (OKID). The Markov parametersthat are
discussedin thispaperarethediscrete-timeMarkovparameters,butphysicaldynamicsystemsare
describedby continuous-timedifferentialequations.Thebasicrelationshipbetweendiscreteand
continuous-timemodels is described. The processof converting the original second-order
continuous-timedynamicequationtoa fast-ordercontinuous-timestatespaceequation,andthento
a first-orderdiscrete-timestatespaceequationis reviewed. Thereverseprocessof convertinga
discrete-timeidentified model to a continuous-timestatespacerepresentationis alsodescribed.
TheToeplitzandHankelmatriceswhicharethetwo importantmatricesof Markovparametersare
explained. Theproblemof realizationfrom theMarkov parametersis thendescribedwith the
EigensystemRealizationAlgorithm(ERA).12-15Manyrealizationtechniquesrequireknowledgeof
theMarkovparametersasa startingpoint. Differentwaysof determiningtheMarkovparameters
or parametersthathavethesamestructureasthoseof Markovparametersarepresented.5-18This
processrequireseithera simpleinterpretationof thesampledresponseunderdifferent specialtest
mputs, or a more substantialcomputationprocedureto obtain the Markov parametersfrom
experimentaldata. In connectionwith this development,particular stochasticlineardifference
equationsfor identificationof statespacemodelsarealsopresentedanddiscussed.Basicrelations
betweenvariousstochasticmodelsandtheMarkovparametersdescribingalinearsystemandthe
associatedobserver/Kalmanfilter areformulated.

2. Input-Output Representation

Dynamic systems are modeled by continuous-time or discrete-time equations. In continuous-
time models, the input-output relations are described by differential equations. In discrete-time
models, they are described by difference equations. A close approximation of a continuous-time

model can be obtained by a discrete one provided that the sampling rate is sufficiently high. A
linear discrete system is commonly described by an n-th order difference equation, the weighting
sequence, or a discrete state space model. Relations between the Markov parameters of a system
and these representations are described.

2.1 Linear Difference Equation

A n-th order difference equation representation of a linear discrete time-invariant system with q
outputs and m inputs takes the general form

y(k) + A1y(k - 1) + ... + A,y(k - n) = Bou(k) + Bau(k - 1) + -.- + B,,u(k - n)

or

y(k)+ _ A,.y(k -i)= 2 Biu(k -i)
i=l i=O

(1)

where the input variable is denoted by u(k), the output variable by y(k), k is the time index, and

_, B, are constant matrix coefficients of dimensions q × q, and q x m, respectively. If a delay
operator operating on a variable z(k) is defined as

q-lz(k) - z(k " 1)

then Eq. (1) can be written in the following form
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A(q-Z)Y(k)=B(q-_)u(k) (2)

where the polynomials of the delay operators are given as

A(q -_) = I+Alq -_ +A2q -2 + ... + A,q-"

B(q -1) = Bo + Blq -_ + B2q -2 + "" + B,q-"

This model of a linear discrete system is sometimes referred to as a Deterministic Auto-Regressive

Moving Average model (DARMA). 4 This form is commonly used in developing recursive system

identification techniques. The above description bears close resemblance to the transfer function

representation of a linear discrete system. The transfer function H(z) is defined to be such that

Y(z) = H(z)U(z), where U(z) and Y(z) denote the Z-transform of the input and output sequences,

respectively. From Eq. (1),

H(z) = (I + Alz-l + ... + A,,z-")-l(Bo + Blz-l + ... + B,,z-") (3)

In the single-variable case, &, B_ are scalar elements, denoted by a_, b_, the transfer function H(z)

is simply

H(z) = Y(z-----2)=bo + btz -l + ... + b,z-"
U(z) 1 + al z -1 + ... + a,z-"

2.2 The Weighting Sequence Description

For continuous-time systems governed by linear differential equations, if the response of the
system to a Dirac delta impulse is known, its response to any other general ioput can be determined
by the convolution integral. Similarly, for discrete-time systems, analogous to the Dirac impulse
function is the Kronecker unit pulse sequence def'med as

1 , k=00 ,k 0 (4)

If the system responses to a pulse sequence applied at each input are assembled to form the unit

pulse response sequence denoted by

Y(0), Y(1), Y(2) ....

then the input-output relationship can be expressed in terms of this pulse response sequence.
Assuming zero initial conditions, this is given by

y(k) = Y(O)u(k) + Y(1)u(k - 1) + Y(2)u(k - 2) + ...

= £Y(i)u(k-i) (5)
i--0
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It can be seen from Eq. (5) that the contribution to the output at time step k by the input applied at

time step k and at previous time steps k-1, k-2, ... are weighted by the pulse response

sequence. For this reason the pulse response sequence is also known as the weighting sequence,

and this input-output description is called the weighting sequence description. If the system is

asymptotically stable, then the infinite summation in Eq. (5) can be approximated by a finite one
since the weighting sequence may be truncated after a finite number of time steps. For lightly

damped systems, however, the retained portion of the weighting sequence can be excessively

large, and this description becomes cumbersome. Taking the Z-transform of both sides of Eq. (5)

assuming zero initial conditions yields

Y(z) = [Y(0) + Y(1)z-' + Y(2)z -2 + ... ]U(z)

= H(z)U(z)
(6)

Thus the Z-transform of the weighting sequence is precisely the transfer function of the system in
the z-domain. Furthermore, it is possible to relate the weighting sequence of a system to the
coefficients of its difference representation in the time domain. Using Eq. (6) and Eq. (3) yields

(I + Alz-' + ... + A,z-')(Y(O)+ Y(1)z-' + Y(2)z -2 + ...)= Bo + Blz-' + ... + B,z-"

By comparing like powers of z -I , the following relationship between the weighting sequence and
the coefficients of the difference equation representation in Eq. (1) is obtained.

{B_, i=O, 1, 2,..., n (7)A,Y(i-k)= 0 i>n
k=O

Ao=]

The quantities Y(k), k = 0, 1, 2, ... are called the Markov parameters of the system. It

immediately follows from the above discussion that (1) the Markov parameters are precisely the
values of the weighting sequence at different time steps, (2) the sequence of Markov parameters is
the pulse response of the system to a unit pulse, (3) the Z-transform of the Markov parameter
sequence is the system transfer function in the complex z-domain.

2.3 State-Space Representation

The input-output relationship can also be expressed in terms of a set of n simultaneous first
order difference equations of the form

x(k + 1) = Ax(k) + Bu(k)

y(k ) = Cx(k) + Du(k )
(8)

where the dimensions of A, B, C, and D axe n × n, n × m, q x n, and q × m, respectively. Solving

for the output y(k) in terms of the previous inputs yields

k

y(k)= __CA'-'Bu(k-i)+ Du(k) (9)
i=l
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The Markov parameter sequence is simply the pulse response of the system, therefore, they must

be unique for a given system. Comparing Eq. (9) to Eq. (5) and noting that u(k) = 0 for k < 0

yields

Y(0) = D

Y(k)=CA"qB , k=l, , 3, °oo

(10)

Equations (10) express the Markov parameters in terms Of the system discrete state space matrices

(A, B, C, D). The state space matrices, however, are not unique since the state vector is

coordinate-dependent. For example, let the state vector be transformed by a coordinate
transformation T

z(k) = Tx(k)

Then Eq. (8) can be written as

z(k + 1) = TAT-lz(k) + TBu(k)

y(k) = CT-lz(k) + Du(k)

which is a state space description (TAT -1, TB, CT -_, D) relating u(k) and y(k) by a new state
vector z(k). The system Markov l_arameters computed using these state space equations are the

same as before,

Y(k) = CT-'(TATq)k-'TB = CAk-'B

Thus, there are an infinite number of state-space representations that produce the same input-output

mapping given in Eq. (9). Of particular interest are the canonical forms where the Markov

parameters appear explicitly in these representations. For example, consider the single variable
case, where the transfer function H(z) in Eq. (3) is rewritten as

H(z)= fl:,,-1 +f12z,,-2 + ... +fl,,_lz+fl,, +d (11)
Z" + _1 z'-I + "'" + a.-lZ + _.

The observability canonical form of the above system is

__

0 1 0

0 0 1

0 0 0

-o6, -or,,_1 -or,_2

i.u

0

0

°'. 1

.... OC1

"Y(1)-I

Y(2") I

B0 = Y(3) I (12)

Yfn) l

c0=[1 o o ... o] no=d

where the coefficients in the input matrix are precisely the first n Markov parameters obtained from
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/3,z"-I+/ 2z"-2+ .-. + #._iz+#.
Zs4-_l zn-1 "b "'" 4"_A-lZ4"_{x i=1

= _Y(i)z -i (13)

However, in the multiple variable case, such a canonical representation with the Markov
parameters appearing explicitly is not of minimum order.

It is also possible to see the Markov parameters in the transfer function description of the

system in state space format as given in Eq. (8). Taking the Z-transform of Eq. (8) yields
Y(z) = H(z)U(z) where the transfer function H(z) can be expressed as

H(z)=D+C(zI-A)-_B

= D + CBz -_ + CABz -2 + CA2Bz -3 + ...
(14)

Finally, consider the case where the system is asymptotically stable. In this case,

lim CA_B = 0
k---_m

The input-output description in Eq. (9) can be approximated by a finite number of Markov
parameters

y(k) = Du(k) + CBu(k - 1) + CABu(k - 2) + ... + CAP-_Bu(k - p)

= _CAi-lBu(k - i) + Du(k)
i=l

(15)

where p is sufficiently large such that CAkB = O, k> p. By comparing with Eq. (1), this

description is a special case of the linear difference description with

Ai=O, Bo=D

(16)

B_ = Y(i) = CAi-IB . i = 1, 2; .... p

The B_ coefficients appear explicitly as the system Markov parameters. Note that this description

with a finite number of system Markov parameters is possible only for asymptotically stable
systems.

2.4 Observer Equation for Input-Output Representation

The system inpui-outlSUt rei_tion can also be described by a set of state space equations derived

as follows. Add and subtract the term My(i) to the right hand side of the state equation in Eq. (8)
to yield

x(k + 1) = Ax(k) + Bu(k) + My(k) - My(k)

= (A + MC)x(k) + (B + MO)u(k) - My(k) (17)

Def'me the following matrices
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-A=A+MC B=[B+MD,-M], v(k)=Iu(k)]
' Ly(k). ]

(18)

Then the original system becomes

m m

x(k + I)= Ax(k) + Bv(k)

y(k) = Cx(k) + Du(k)
(19)

If M is a matrix such that "A= A + MC is asymptotically stable then the input-output relation can be

approximated by a t-mite number of parameters CA'i-IB, say p of them.

y(k)= _ C'Xi-1-Bv(k- i)+ Du(k) (20)
i=l

Noting that v(k) contains both u(k) and y(k), Eq. (20) can be rewritten as

y(k) + _ C(A + MC) '-_ My(k-i)= _ C(A + MC)'-_(B + MD)u(k-i)+ Du(k)
i=1 i=1

(21)

Observe that Eq. (20) is in a linear difference form as in Eq. (1) with the coefficients given by

Ai = C(A + MC) i-1M

B, =C(A+ MC)'-_(B + MD)

(22)

The role of the matrix M in the above development can be interpreted in terms of an observer.

Consider the system given in Eq. (8). It has an observer of the form

,_(k + 1)= A_(k)+ Bu(k)-M[y(k)-:_(k)]

_(k) = C.2(k) + Du(k)
(23)

The state equation in Eq. (23) can be expressed as

._(k + 1) = A._(k) + Bu(k) - MC[x(k) - ._(k)]

=(A + MC)Yc(k)+ Bu(k)- M[y(k)- Du(k)]

=(A + MC).?c(k)+(B + MD)u(k)- My(k)

(24)

Defining the state estimation error e(k) = x(k) - :c(k), the equation that governs e(k) is

e(k + 1) = Ax(k) + Bu(k)- [(a + MC)Yc(k) + (B + MD)u(k) - My(k)]

=(A + MC)e(k)

7



If the system(8) is observable,then the matrix M may be chosen to place the eigenvalues of

A + MC in any desired (symmetric) configuration. If the matrix M is such that A + MC i s

asymptotically stable, then the estimated state i(k) tends to the true state x(k) as k tends to infinity.

Equation (24) then becomes

x(k + 1) = (A + MC)x(k) + (B + MD)u(k) - My(k)

which is exactly the same as Eq. (17). From this analysis, the matrix M can be interpreted as an

observer gain.

The parameters CAi-_B in Eq. (19) are the Markov parameters of an observer system, hence

they are referred to as observer Markov parameters. They are denoted by

Y'(O) = D , Y'(k) = CA_-_B , k = 1, 2, ..., p (25)

The extra freedom inherent in these parameters can be exploited to develop various identification

algorithms.5-11 Consider the case where M corresponds to a deadbeat observer gain, the observer

Markov parameters become identically zero after a finite number of terms. For lightly damped

structures, this means that the system can be described by a reduced number of observer Markov
parameters Y(k) instead of an otherwise large number of the usual system Markov parameters

Y(k). For this reason, the observer Markov parameters are useful in the development of various

system identification algorithms. The relationship between the Markov parameters of the observer

system and those of the actual system will be presented in the following section.

3. Relationship between the Markov Parameters
of the Observer and Actual System

The observer Markov parameters contain information about the system and the observer. It is
possible to recover both the system and the observer gain from a given set of observer Markov
parameters. This section describes this relationship.

3.1 Recovery of System Markov Parameters from Observer Markov Parameters

In this section, the basic relationship between the Markov parameters of the observer and
actual system is described. First, it is shown in the following that given a set of observer Markov

parameters, the system Markov parameters can be recovered uniquely. The direct transmission

term D is simply

D = Y(0) = Y'(0) (26)

For ease of presentation, the observer Markov parameters are partitioned as

Y'(k) = CA'_-1B

=[C(A + MC)k-'(B + MD) -C(A + MC) _-1M]

(27)



TheMarkovparameterY(1) = CB of the system is simply

Y(1) = CB = _<t> (1) + yo> (1)Y(0)

To obtain the next Markov parameter Y(2) = CAB, consider Y (2)

Similarly,

Y(2) = CAB = ?'¢1>(2)+ Yc2)(1)Y(1)+ ?¢2> (2)Y(0)

Y(3) = CA2B

_... g(1)(3) - CMCAB - C(A + MC)MCB - C(A + MC) 2 MD

= _<1>(3) + _'<2>(1)Y(2) + f,-¢2>(2)Y(1) + _-¢2>(3)Y(0)

By induction, the general relationship between the actual system Markov parameters and the
observer Markov parameters can be shown to be

k

Y(k) = f'-°>(k) + _ ?'(2> (i)Y(k - i) (28)
i=l

where Y'(k) are considered to be zero for k > p. The above recursive equation can be written in
matrix form as

I

--?'(2>(1) I

-y'(2>(2 ) -y'(2)(1 ) "..

: ." ",

-Y'¢2)(k-1) -Y'(2>(k-2) -.-

Y(1)

Y(2)

Y(3)

.Y(k).

"gc'>(l)- I

y,1>(.2) I
= f"°>(3)I+

Y('>(k) I

"?'(2>(1 )"

?'(2> (2)

?'¢2>(3)

gc >(k)

r(o) (29)

The left most matrix in the above equation is square and full rank, which implies that from a given
set of observer Markov parameters Y (k), the system Markov parameters Y(k) can be uniquely
recovered.

Furthermore, let the matrices V c2>, and Y be defined as follows

V(2> = [_?-¢2> (p) _?-¢2> (p _ 1) __'(2>(p _ 2) .... ?'(2>(1)]

¥=[Y(p+2) Y(p+3) Y(p+4) ..- Y(Zp+l)]

(30)

then from Eq. (28)

V¢2>H(1) = Y (31)

where

9



I Y(2) Y(3) ... Y(p+l) 1

Y(3) Y(4) ... Y(p+2) /H(1)= i i ".. i (32)
/

Lr(p+l) Y(p+2) ,,. Y(2p) J

Examining the rank properties of Eq. (31) reveals that to describe a system of order n, the number

of observer Markov parameters p must be such that qp >_n where q is the number of outputs.

Furthermore, the maximum order of a system that can be described with p observer Markov

parameters is qp. The implication of this analysis is that for multiple-output systems, the number

of observer Markov parameters required to be identified can be substantially less than the true order

of the system. Specifically, the minimum number of observer Markov parameters that can describe
the system is P,m, which is the smallest value ofp such that qp_a_ > n.

3.2 Recovery of Observer Gain from Observer Markov Parameters

Since the observer Markov parameters contain information of both the system and observer

gain, it is possible also to recover the observer gain M from the observer Markov parameters.
First, the sequence

YM (k) = CAk-IM , k = 1, 2 .... (33)

can be computed from the observer Markov parameter sequence Y'(k) = CA'k-IB ", k = 1, 2 .... as
follows

k-I

Yu (k ) = _y(2)(k ) + _ yc2)(i)YM (k - i) (34)
i=l

The parameters in Eq. (33) contain information about the observer gain, therefore they are referred

to as observer gain Markov parameters. Given A, C, and a sufficient number of observer gain

Markov parameters YM(k) computed from Eq. (34), the observer gain M can be obtained from

M=(v:v,)-'v:Y. (35)

where

CA CAM
V_= Y_ = :

, LCA'_Mj

prodded Vk is of _ n. Aiternatively,_e observer gain matrix M can be realized simultaneously

with the system matrices A, B, C from the combined Markov parameters

10



p(k)=[CAk-lB CAk-_M]

=CAk-I[B M] ,

This problem will be revisited in a later section.

k=l, 2, ...
(36)

4. Relationship between Discrete and Continuous-Time Models

The results presented so far are concerned with discrete-time models. However, all structural
systems are continuous, but information available for identification is in the form of sampled data.
In this section, the relationship between continuous and discrete-time models is described.

4.1 Continuous-Time Dynamic Equations

Consider the equations of motion for a finite-dimensional linear dynamic system of the form

Mfb(t) + Dw(t) + Kw(t) = Bfu(t) (37)

where M, D, and K denote the system mass, damping, and stiffness matrices, respectively. If the
dynamic system is measured by output quantities such as position, velocity, and acceleration then
in general the set of observation variables can be written in matrix form as

y(t) = C_w(t) + C2_(t) + C3¢b(t)

= [6"1 - C3M-'K]w(t)+ [C2 - C3M-'D]w(t)+ C3M-'Bfu(t)

Equation (37) together with the ouput equation can be written in first order form as

i(t) = A,x(t) + Bcu(t)

y(t) = Cx(t) + Du(t)
(38)

where

Eo , EolA, = _M_IK _M_ID , Bc = M_IB f

(39)

C=[C_-C3M-'K C2-C3M-'D] , D=C3M-'Bf

This is the continuous-time equations in state space format. The continuous-time state space

equation can be converted to the discrete-time equation by the following procedure.

4.2 Conversion of Continuous to Discrete-Time State Space Model

The general solution for x(t) at any time t for any input u(t) from any initial condition x(to) is

11



x(t) = e/'_'-_)X(to) + _e/_C'-_)Bcu( r)dz

Consider discrete sampling time intervals 0, T, 2T ..... To see how x(t) changes from one time

step to the next, replace to = kT and t = (k + 1)T in the above equation. Furthermore, assume a

zero-order hold on the input, i.e., the input u(kT) is held constant over the time interval from kT to

(k + 1)T, one obtains

a,T k+1)r a,[(k+Dr-_]
x[(k+l)T]=e x(kT)+_r e B,u(z)dz

=ea'rx(kT)+(J:e/_ed'C'B_)u(kT)

Using a simplified notation k for the time argument kT,

x(k + I)= Ax(k) + Bu(k)

y(k)= Cx(k )+ Du(k )
(40)

where the output equation is written at every time step, and

A = e A'r , B = _reA"dzB, (41)

and the C and D matrices are the same as in the continuous-time representation, Eq. (38). Equation
(40) is a discrete-time state space equation with a sampling interval T for the continuous-time
dynamic system in Eq. (37).

In practice, to compute the matrix exponential, one can use an approximation of the form 19

[e a'r= R_o , O, j>_O (42)

where R,_,_(z) is the (0,0) Padd approximam to e"

k=o_"ckz_ (20- k)! O[ (43)
R_(z) = o , ck =

_., ck(_z)_ (2O)!k !(0 - k )[
k=O

In fact, the discrete-time A and B can be computed from the continuous-time A_ and B, in one step
by making use of the following identity

tD(t=T)=e[AO " _0]r=[ 0 B]
(44)

i

12



The above identity can be proved by first noting that 0(0 is the solution of the following matrix

differential equation

dO IAc Bc]o O(0)=I (45)-_-= 0

Denote O,, O12, 02_, 022 as the partitions of O,

From Eq. (44)

dO1-'--L= A, Oll, dOl---Z2= AcO12 + BCO22 , dO2.......11= 0 dO22 _ 0 (46)
dt dt dt ' dt

Application of the initial conditions O1_ = I, O21 = 0, 022 = I yields Oll = A, O2_ = 0, 022 = I.
To show O12 = B, pre-multiply both sides of the O_2 equation by e -A" and rearrange terms

e-A,, dOi2 -A,t--._.e ,_q'12 = e-A'tBc
dt

Integrating both sides of the above equation from t = 0 to t = T, recognizing that the left hand side
is a perfect differential, yields

_To d [ Ad it=Te-A,,O12(t)]dt=e- O12(t_,= 0 =Joerr -a,,,,t_cdt

Solve for O12(T), noting that O12(0) = 0,

_T0 fT A,¢ nO_2(T) = e"Ir-')B_ dt = Jo e uc d_" = B
(47)

The last step in Eq. (47) is ob_ned by a change of integrationvariable from (T - t) to 'r.

4.3 Conversion of Discrete to Continuous-Time State Space Model

A realized discrete-time system matrix A can be converted to a continuous-time one. Assume
thatA can be diagonalized by a matrix P such that p-lAp = A = diag(_,_, ;I,2, -.., _,,), then

_(_, _2 h_..)rA=P-_e't'rp=e _'-'A'er=e _ F" r ' "

A continuous-time system malrix A, can be obtained from

13



A= Pdiag(,l___ ln_,2 l?.)p__' T' ' (48)

The eigenvalues of the continuous-time A: are

In _,_

7'_ = crJ +i_°_ = T

=Re(-_--L)+i_Im(ln_'_rl:2lx_[ _,r ) rJ'
/=0, 1, 2, ...

(49)

There is no unique continuous-time system that produces a given discrete-time model. Under the

assumption that the sampling rate is sufficiently fast such that all frequencies in the signals being

identified fall below the Nyquist frequency, an appropriate value of g may be chosen. In practice,

there will always be frequencies outside the Nyquist frequency, and this choice of l will

misinterpret as frequencies within the Nyquist frequency and thus produce modelling errors. This

phenomenon is known as aliasing. In the identification of structures, the complex parts of the

eigenvalues are the modal frequencies, and the real parts are the modal damping factors
characterizing the decay rates of the modal oscillations.

To convert the discrete B to a continuous Be, first write A = e a" as a convergent power series

2.2 _3 .3
.. AcI , _cl ,

A=e aa =l+Adt-t-_ ...
2I 3!

(5O)

Therefore,

A 2 T 2 A 3 T 3
A-I=AcT+"c" +"c" + .-.

2! 3t
Hence

A_Bc T 2 AcB_3T 3
(A - I)B_ = A_BcT + ! + ...

2! 3!
(51)

Integrate the second equation in Eq. (41) term by term, and pre-multiply by A_

A_Bc T 2 A_Bc T 3 -
A,.B = AcB_ T -I + _ _- ...

2 3x2!

Comparing Eq. (51) and Eq. (52) immediately yields

( A - I)B_ = A_B

The continuous-time input matrix B, is

B_ =(A-I)-IAB

(52)

(53)
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In this section,to deriveEq. (48) and Eq. (53), the matrix A is required to be diagonalizable. This
requirement excludes the presence of rigid body modes in the model. To account for rigid body
modes, a different procedure must be used to convert from a discrete to a continuous-time
presentation. Note that the reverse procedure to convert from the continuous to a discrete-time
presentation formulated in the previous section using matrix exponential does not have this
limitation.

5. Toeplitz and Hankel Matrices

Two important matrices often used in system identification and control are the Toeplitz matrix
and the Hankel matrix. They are simply matrices of Markov parameters of particular structures.

5.1 The Toeplitz Matrix

Often associated with the Markov parameters is a lower block triangular Toeplitz matrix. The

input and output histories of the discrete system given Eq. (8) satisfy the relation

y(k_ +1) = CA:

Ly(k + n- 1) ,-1

[O lr ]CB D u(k + 1)
x(k)+ . .

• ,° ".° !

LCA"-=B ... CB OJLu(k + n- 1)

(54)

The observability matrix V,_I and the Toeplitz matrix T(n - 1) formed by the Markov parameters
are defined as

CA
V._l= T(n- I)=

tl--i

Y(O) ]

Y(1) Y(O)

Iw I *Oo

Y(n-1) --. Y(1) Y(O)

(55)

with the blank spaces denoting zero elements. The Toeplitz matrix is also known as the pulse
response matrix.

5.2 The Hankel Matrix

Another important matrix of Markov parameters which is often encountered in realization

theory is the Hankel matrix. The Hankel matrix is defined as

Y(k) Y(k+l) ... Y(k+s) ]IH(k-1)= Y(k+l) Y(k+2) ... Y(k+s+l)
: : i

Y(k + r) Y(k + r + l) ... Y(k + r + s)J

(56)
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If r + 1 > n and s + 1 > n, the Hankel matrix is of rank n. The Hankel matrix can be factorized in

terms of the system observability matrix 1:, and controllability matrix IV, as

H(k) = V, AkW, (57)

where

CA
V,: W,:[B AB ... A'B]

For the scalar case considered in the previous section, it is interesting to point out a
relationship between the system parameters, the Hankel matrix, and the Toeplitz matrix for the
system characterized by the transfer function given in Eq. (11). They are related by

H(0)[a. a._, ... a_]r=[Y(n+l) Y(n+2)..-Y(2n)] r

... ... a._,]T
(58)

where

r(2) r(3) ... r(n+l) T(n)= Y ) r(1)
H(0)= ! : : _ . ... ...

[.Y(n) Y(n+l) -.- Y(2n-1)J LY(n) --- Y(2) Y(1)

6. Realization from Markov Parameters

The problem of finding a state space model from a given sequence of Markov parameters is
known as realization. The theory of minimal realization finds such a model with minimum

dimensions. A realization technique applicable to identification of structures is the Eigensystem
Realization Algorithm (ERA) which is summarized in the following.

6.1 State Space System Realization by ERA

ERA considers the problem where a sequence of Markov parameters Y(1), Y(2), Y(3) .... is

given. The objective is to find a state-space realization A, B, C such that the relation given in Eq.

(10) holds. The algorithm begins with a Hankel matrix defined as in Eq. (56). The order of the

system n is determined from the singular value decomposition of H(0)

H(0) = U £ V r = Ul £1 V1r (59)
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The columns of U_ and V_ in Eq. (59) are orthonormal, and correspond to the positive singular

values in an n x n diagonal matrix ]g_. A discrete-time minimal order realization of the system can
be shown to be

A, = I;?_/2UrH(1)V_I;?_/2, B, = I;_J2V_TE., 6",= E,u_r_,_2 (60)

where E r = [la O,_ --- O,_], t_ = m, q. Thus, for a finite dimensional system, knowledge of a
sufficient number of Markov parameters is adequate to obtain a state-space realization for the

system.

An important aspect in connection with system realization from Markov parameters is the order
of the minimal realization. In the noise-free case, given a sufficient number of Markov parameters,

the minimal order n is equal to the rank of the Hankel matrix, which is equal to the number of

positive singular values in E_. Equation (59) holds exactly. This is evident from the factorization

given in Eq. (57) and the fact that a minimal order realization must be observable and controllable.

In practice, however, all structural systems have noises and nonlinearities, the problem of rank
determination is not trivial. The singular value decomposition step in the above realization

procedure is normally used to determine this order. Certain smaller singular values corresponding
to less significant modes are attributed to noises, and truncated. The number of retained singular

values then determine the system order. The corresponding retained columns of U and V in the

singular value decomposition of H(0) are used in Eq. (60) to obtain a realization.

6.2 State Space System/Observer Realization

Realization can be thought of as a factorization of a parameter sequence of the form

Y(k) = CAk-_B, to obtain a set of (C, A, B) that preserves the prescribed relationship between the

parameters in the sequence. Therefore, the theory is applicable to factorization of all such

sequences whose parameters obey the same prescribed relationship. The ERA procedure can be

applied to the combined Markov parameter sequence P(k) given in Eq. (36) by fhrst forming the
Hankel matrix of P(k)

He(k- 1) =

t,(k) P(k + 1)

P(k + l) P(k + 2)

P(k+r) P(k+r+l)

• .. P(k+s) ]

• .. P(k+s+l)

• .. P(k+r+s)

(61)

The following realization will simultaneously identify A, B, C and the observer gain M

_T D /'11/2
A,=Dt-_/2p_rHc(1)Q_O? '/2, [B, M,]=D_/2QrE,,+,, Cr=,--,,_oa (62)

whereHc(O)=pDQr=p_D_Q_r, and Er=[l,, Oa "" 0,_], a=m+q, q.

In the previous development the set of parameters is precisely the Markov parameter sequence
of a discrete system. In system identification, the Markov parameters are obtained or computed

from measurement data. The determination of the Markov parameters from sampled data is

discussed in the following section.
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7. Determination of Markov Parameters from Sampled Data

Under certain conditions, it is possible to interpret the sampled data directly as Markov
parameters. In some other cases, the Markov parameters can be computed from input-output data.
In particular, the following cases axe considered.

7.1 Impulse Test Input

Let the system given in Eq. (38) be subjected to an impulse in thej-th input, starting from zero
initial conditions. The response is recorded at evenly spaced discrete-time intervals, and denoted

by yC_)(kT), k - 0, 1, 2, ... beginning with y¢i)(0) = yCJ)(0 ÷) immediately after the impulse has

entered the system. The sampled response for the j-th input impulse is

kT

yCJ)(kT) = CeA'n'x(O) + Ce '_r f e-_B_)u( z)d_ + Du(kT)
0

=C(e'_r)kB_ j' =CA B2*¢J'

(63)

where ,q__(i)denotes thej-th column of the input matrix Be, j = 1, 2, ..., m. The same impulse test

is applied to every input in the system, one at a time. The data is then assembled to form the

following data sequence, which has the same structure as that of the Markov parameters

[yC')(kT) yC2_(kT).., yC"'(kT)]=[CAkB_ _ CA_B_ 2) ... CAkB_ m)]

=CA_[B_ '' B_2, ... B( ",]

=CAkB_ , k = O, 1, 2, 3, ... (64)

where:a isth-e discrete-time system matrix for the system in Eq. (38) CorreSponding to the

sampling period T, A = e a'r, but B, is the continuous'time input matrix, and C the output matrix
which is the same for both discrete and continuous-time cases. Note that the data is recorded after

_e impulse has entered the System, therefore, info_ation regardlng D isnot available. Since a

true impulse is actually not available in practice, for a SuffiCiently rich input, the needed data
sequence can be obtained by taking the inverse fast Fourier transform (b'F'D of the ratio of the FFT

transforms of the input and output measurements,

7.2 Unit Pulse Test Input

A way to obtain the true Markov parameter sequence is by applying a unit pulse for the j-th
input

10 , k=0uj(kT)= , k = 1, 2, 3.... (65)

with a zero-order hold on the input to maintain the input values during each sampling interval. The

discrete-time equivalence of the continuous-time system of Eq. (38) for thej-th input is
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x(k + 1) = Ax(k) + BtJ)uj(k)

yCJ_(k) = Cx(k) + DCi_u:,(k)

where B ¢i) and D ¢j) denote the j-th column of B and D, respectively. The corresponding response

is measured at discrete sampling intervals, and denoted by yCJ)(kT), k= 1, 2, 3 ..... With zero

initial conditions, a separate test is conducted for each input. The sampled responses of the

continuous-time system are then assembled to form the data sequence

[y("(0) y¢2'(0).-, y¢"(0)]=[O ¢'' D ¢2) -.. Dc'°]=D (66)

and

[yCl)(kT) y<2)(kT) y¢"'(kT)]=[CAk-'B o' CAk-'B t2' ... CAk-'B¢"o]

=CA*-'[B ¢'' B¢2_ ... B ¢'_]

=CA*-IB, k=l, 2, 3, ... (67)

Observe that this sequence is precisely the tree Markov parameter sequence of the system discrete-
time state space model with a sampling interval equal to the duration of the unit pulse test input.

7.3 Extended Unit Pulse Test Input

To put more energy into the input, consider a unit pulse in the j-th input held forp time steps

{10 ,k=0,1,2, P-1....uj(kT)= , k=p, p+l, p+2, ... (68)

With zero initial conditions, the response sequence at time steps 0, T, 2T ..... (p - 1)T is

yO_(0) = D ¢_

and

yCJ)(T) = CB ¢i_+ D ¢i_

y¢/) (2T) = CAB Cj) + CB Cj>+ D Cj)

yCi)[(p - 1)T] = CAP-2B ¢i_+ ... + CB ¢_ + D ¢_

and for time steps beyond pT

y¢i)(pT) = CAP-_B ¢_)+ ... + CB Cj)

y¢/)[(p + 1)T] = CAt'B ¢_ + ... + CAB ¢_

The Markov parameter sequence associated with thej-th input is simply
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and for k = p- 1, p ....

D ¢_)= y¢))(0)

CB¢Y)= yCJ)(T) - y¢i_ (0)

CAP-2B ¢i_ = yCJ_[(p- 1)T]-yCJ)[(p- 2)T] (69)

CA_B ¢_>= yti)[(k + 1)T] - _ CAk-iB Cj_ (70)
i--I

The results for each input are

parameters.

7.4 Free Decay Response

then assembled to obtain the system discrete-time Markov

Consider the free response of the system given in Eq. (40) from a non-zero initial condition,
the sampled response is

y(kT) = CAkx(O), k = 0, 1, 2, ... (71)

The above sequence has the same mathematical structure as the Markov parameter sequence, except

that the initial condition x(0) plays the role of B. An identification procedure applied to the above

sequence will produce a realization of C, A, and the initial condition x(0).

7.5 Random Test Input

Consider the case where the system given in Eq. (40) is driven by an independent, white,
zero-mean, stationary random input sequence with unit covariance

e{uCkT)u(kT) T} = X, k = 1, 2, 3, ... (72)

With a zero-order hold on the input, the resultant response is measured at discrete sampling

intervals, y(kT), k = 1, 2, 3, .... First, note that

E{y(k )u(k )r } = E{[Cx(k ) + Ou(k)]u(k)r } = O (73)

Next, consider

E{y(k + 1)u(k)r} = E{[CAx(k)+CBu(k)+ Du(k + 1)]u(k)r}=CB

In general, the Markov parameters of the system are related to the covariance between the input and
output data by

e{yCk+i)u(i)r}=cak-_B , k=l, 2, ... (74)
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In practice, if the above relations are to be used to compute the Markov parameters, the expected
values are replaced by sample covariance computation. This approximation is only valid when the
input-output data sequences are stationary and the records are sufficiently long such that the
ergodicity property of stationary random processes apply.

7.6 System Markov Parameters from General Input-Output Data

The problem of determining the Markov parameters from a general test input is can be

addressed using various input-output models that are described in previous sections. Suppose that
a set of N+ 1 measurements of y(i) and u(i), i = O, 1.... , N, is available. Assuming zero initial

conditions, the input-output data can be written in matrix form as

y = YIv-_UN (75)

where

y=[y(O) y(1).., y(p) y(p+l)-.- y(N)]

YN-t:[D CB ... CAP-'B CAPB ... CAN-'B]

UN -"

"u(0) u(1)

u(0)

• .. u(p) u(p+l) --. u(N)

• .. u(p- 1) u(p) ... u(N- 1)

"'. : : i :

u(O) U(1) : :

u(0) ".. i

"'. u(1)

u(0)

In the single-input case, UN is a square matrix. The Markov parameters in YN-t can be solved

from this equation,

Yu-x= yU_' (76)

provided u(0) _ 0 so that U_v is full rank. This solution cannot be extended to the multiple-input

problem since in this case YN-_ cannot be determined uniquely. If the system is asymptotically
stable, and p is sufficiently large such that the Markov parameters CAk-IB can be neglected for

k > p then it is possible to solve for the Markov parameters D, CB, CAB, ..., CAP-_B from the

linear set of equations

y = YU (77)

where

Y:[D CB ... CAP-'B]

21



u(0) u(1) ... u(p) u(p+]) ... u(N) ]/U= u(O) ... u(p-1) u(p-2) -.- u(N-1)

u(0) u(1) ... u(N-p)J

The solution for the system Markov parameters from Eq. (77) is

Y= yur(uur) -' (78)

provided that the data record is sufficiently long, and the input is sufficiently rich such that the
inverse in Eq. (78) exists. For lightly damped, large flexible structures with multiple sensors and

actuators, this direct solution for the Markov parameters is not desirable in practice since the

number system Markov parameters required in Y may be excessively large.

If the initial conditions are not zero then a slightly different equation must be used in place of
Eq. (78) to solve for the system Markov parameters. This is given as

Y = y, ur(u, ur) -1 (79)

where y, and U, are obtained by deleting the first p columns in y and U, repectively.

7.7 Observer Markov Parameters from General Input-Output Data (OKID)

The above mentioned problem can be overcome by solving for the observer Markov
parameters instead. The observer equation counterpart of Eq. (77) is simply

i

y = YV (80)

where

v=[o cx.'a]

u(0) u(1) ... u(p) u(p + 1) ... u(N) "]V= v(O) ... v(p- ]) v(p- 2) ... v(N-1) ["'. " ; ; i _ ,

v(0) v(1) ... v(N- p)_]

where v(k) is defined as in Eq. (18). A solution for the observer Markov parameters is

Y= yVr (VVr) -' (81)

If the initial conditions are not zero then a slightly different equation must be used to solve for the

observer Markov parameters,
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v =yv;(v,v;)-' (82)

where y, and V, are obtained by deleting the first p columns in y and V, repectively.

The system Markov parameters and the observer gain Markov parameters are recovered from

the observer Markov parameters using Eq. (28) and Eq. (34), respectively. As mentioned in

Section 6.2, application of ERA will produce a realization of both the system state space matrices

and the corresponding observer gain.

In the noise-free case, it is sufficient to solve for a minimum number of observer Markov

parameters to recover the system Markov parameters. As discussed previously, for a system of

order n, this is the minimum value p,= such that qp=_, > n, where q is the number of outputs.

However, if more than the minimum number of observer Markov parameters are to be solved for,

P > P,m, then the matrix V (or V,) is row rank deficient. This implies that the observer Markov

parameters are not unique. A solution can still be found by simply replacing the inverse of the
quantity in the parentheses in Eq. (81) by a pseudo-inverse.

With noises, however, the matrix V (or V,) tends to be full rank. In this case, the solution

given in Eq. (81) or Eq. (82) is the least-squares solution that minimizes the residual

e = y - YV or e, = y, - YV,

m

depending on either Eq. (81) or Eq. (82) is used to solve for Y. In the presence of process and
measurement noises that are white, zero-mean, and uncorrelated with the data, the least squares
result can be interpreted in terms of the Kalman filter. The relationship between the deterministic
and stochastic approaches is established in Ref. 10. Similar insights can be obtained by examining
the structures of the stochastic models considered in Ref. 11, and in Section 8 of this paper.

7.8 Observer Markov Parameters from General Input-Output Data with
Prescribed Observer Poles

The problem of identification of observer Markov parameters with prescribed observer poles is
briefly presented here. For an observable system, it is always possible to assign the observer

poles in any (symmetric) configuration. For simplicity, consider the case where all prescribed

poles are real, distinct, with magnitudes less than one. They are denoted by Z_, i = 1, 2 ..... n.

It can be shown that Eq. (21) can be written as

[O(k - 1)]

y(k)=a_)u(k-i-1)+_(,"y(k-i-1)+Du(k)=[tx _ <8_>

,=o ,=o L u(k) .I

The quantities 0(k - 1) and tp(k - I) are the weighted input and output data vectors

O(k- l)= _3,,,u_(k- p) , ¢p(k-1) = _,y(k- p)

where 3,,, _ are the weighting matrices formed by the prescribed eigenvalues,

(84)
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"/_ (p-l) ;_ (p-2) _ 0) 1--l,t --l,t """ "_ l,t ]txt
I

_l (p-D _(p-2) 20) |--2,t --2,t """ L&2,t ]t×t

I, , .,. • :
--

_(p-D _(p-2) _10) x
=,.t =,.t "'" _,.t It t ]

, t=m, q

_(_) ( , )k ) , i = l, 2, n k = l, 2, p-1i.t = diag /_ /_, "'" , i txt ""' .....

and u(i - p) and y(i - p) denote the mp x land qp x 1 input and output history vectors defined as

u(k_p)]

u(k-P)=lu(k_2)l , y(k-p)=

Lu(k-llJ

y(k - p)]

ly(k-:)/
Ly(k-1)J

For convenience, Eq. (83) can be simply written as

y(k) = yr(k- Z) (85)

where

[¢(k- 1)]

?=[tt 13 D], / (86)

L u(k) 3

For a set of N + 1 measurements of Y(0 and u(0, i = 0, 1..... N, assuming zero initial conditions,
the input-output relation can be written as

y=¥r

where y is given as in Eq. (75) and Fis

y=[y(O) y(1) -.- y(p) y(p+l) -.-

r=[r(-1) r(0).., r(p-1) r(p)

with u(k), y(k) set to zero for k < 0.

computed from

(87)

y(N)]

F(N-1)]

(88)

The least squares solution for the observer parameters T are

v=yrT(rrT)-' (89)

As before, if the initial conditions are not zero then the observer parameters can still be solved from
Eq. (89) with y and 1" replaced by Y, and r',, which are obtained by deleting the first p columns
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of y and F, respectively. The observer Markov parameters are computed from the observer

parameters as

Y(k)= C(A + MC)k-_[B + MD -M]

-1, (90)

where

=2.t _,.t / , l =m, q

As before, the system Markov parameters and the observer gain Markov parameters are recovered
from the observer Markov parameters using Eq. (28) and Eq. (34), respectively. The general case
where the prescribed poles are complex or deadbeat can be treated similarly. The readers are
referred to Refs. 6 and 8 for further details.

8. Stochastic Linear Difference Equations

This section examines some particular stochastic linear difference equations for the
identification of state space models in the presence of noises. In particular, two models are
considered that can be interpreted in terms of a Kalman filter.9-11

8.1 Kalman Filter Model

Consider the case where the state-space equations given in Eq. (8) are extended to include
process and measurement noises

x(k + 1) = Ax(k) + Bu(k) + wl(k)

y(k) = Cx(k) + w2(k)
(91)

The process noise w_(k) and measurement noise w2(k) are two statistically independent, zero-

mean, stationary white noise processes with covariances Q and R respectively. The same system

can also be expressed in the form of a Kalman filter

;2(k + 1) = AJ(k) + Bu(k) + Ke(k)

y(k) = C_r(k) + Du(k) + e(k)
(92)

where e(k) is a white sequence of residual with covariance Z = CPC r + R, and P is the unique

positive def'mite symmetric solution of the algebraic Riccati equation

p= APAr- APCr(CPC r + R)-'CPA r +Q

The Kalman filter gain K is given by K = APCr(CPC r + R) -_ = APCrZ -_ .

(91) can also be expressed as

The system in Eq.
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Define

Equation (93) becomes

._(k + 1) = (A - KC)_(k) + (B - KD)u(k) + Ky(k)

y(k) = C_(k) + Du(k) + e(k)

A=A-KC B=[B-KD, K] , v(k)=[ u(k)]
' Ly(k)j

_(k + 1) = 7i3:(k) + Bv(k)

y(k) = CYc(k) + Du(k) + e(k)

(93)

(94)

(95)

Provided that Pl is sufficiently large such that

_k = (A - KC) k = 0 k >_Pl (96)

the input-output description with zero initial conditions can be approximated by

Pl Pl

y(k) - _., C(A - KC)'-' Ky(k - i) = ___C(A - KC) i-' (B - KD)u(k - i) + nu(k) + e(k)
i=I i=l

(97)

This equation has the following linear difference structure

Pl Pt

y(k)+ _ A.y(k-i)= _ B_u(k-i)+ e(k) (98)
iffil iffiO

where

_.. = -C(A - KC)'-'K, P,o = O

(99)

ni i-1 •=C(A-KC) K, _.:_t=l, 2, .:., p,

Observe that this is an extension of the deterministic linear difference equation presented in Eq. (1).

In Eq. (98), the term e(k) tends to the residual of the Kalman filter provided that p_ is sufficiently

large such that the condition given in Eq. (96) holds. The stochastic model structure in Eq. (98),

which is only valid if Pl is sufficiently large, has an important interpretation in the deterministic

case which does not require Pl to be as large. This can be seen be re-examining the deterministic

formulation in light of the stochastic consideration here. Comparing Eq. (97) to Eq. (21) reveals
that Pl = P and K = -M, provided that e(k) - O. Thus the matrix K plays the role of -M in the

deterministic case. The role of the matrix M in the deterministic case has already been explained.

One thus see that the stochastic equation considered in Eq. (97) takes a precise meaning when
reduced to the edete_nistic case. Consequently, the deterministic solution for the observer

Markov parameters given in Eq. (81) or Eq. (82) has a precise interpretation with respect to the

Kalman filter when applied to noisy data. This analysis only serves to interpret the meaning of the

26



residual term in Eq. (98). In system identification, in order to assure that the identified residual
indeed converges to the Kalman filter residual, the data set used must be sufficiently long.

The Markov parameters associated with a Kalman filter are called Kalman filter Markov

parameters. Identification of these parameters recovers not only the system but also an optimal

Kalman filter. An important advantage of the structure in Eq. (97) is that the residual e(k) appears
as an additive term. However, the model structure is valid in describing the input-output relation

of the original system given in Eq. (91) in term of the Kalman filter only when Pl is sufficiently

large such that the condition given in Eq. (96) holds. Typically Pl is required to be several times

larger than the order n of the system, Pt >> n.

8.2 ARMAX Model via a Kalman Filter

In this section, a more general stochastic linear difference model is considered. This model
has the form

Pa P2 R=

y(k)+ ___Ay(k-i)= _ B,u(k-i)+ _C,e(k-i) (100)
i=l i=O i=O

This stochastic linear difference model, also known as an Auto-Regressive Moving Average with

eXogeneous input model (ARMAX), is widely used in adaptive estimation, filtering, and control
literature. An interpretation of the coefficients of this model in terms of the Kalman filter is given
below.

Add and subtract the term My(k) to the right hand side of the state equation in Eq. (92),

._(k + 1) = AS:(k) + Bu(k) + My(k) - My(k) + Ke(k)

= AYe(k) + Bu(k) + M[C_(k) + Du(k) + e(k)] - My(k) + Ke(k)

= (A + MC)_(k) + (B + MD)u(k)- My(k) + (M + K)e(k)

(101)

Define

- I u(k)] M=M+K
A=A+MC, B=[B+MD,-M] , v(k)=LY(k)] ,

(102)

the original system in Eq. (91) can be described in the form

_(k + 1) = A'_(k) + "By(k) + M'e(k)

y(k) = C_¢(k) + Du(k) + e(k)
(103)

The input-output description of the above system with zero initial condition is
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P2 P2

y(k)+ EC(A + MC)'-' My(k-i)= _C(A + MC)'-'(B+ MD)u(k-i)+ Du(k)
i=1 i=1

p2

+ _C(A+ MC)'-I(M + K)e(k-i)+ e(k)
i=l

(104)

where M and p 2 are such that

"_k = (A + MC) k _ 0 k > P2 (105)

For an observable system of order n, it is possible that P2 < n << Pl. The coefficients of this

ARMAX model in Eq. (100) given in terms of A, B, C, M, and K are

A=C(A+MC)i-IM, i=1, 2, ..., P2

Bo=D, B_=C(A+MC)Z-IM (106)

Co-.I, C_=C(A+MC)'-'(M+K)

This model has the advantage that P2 need not be as large as pl in the previous model. However,

this advantage is off-set by the introduction of the noise dynamics described by the C_ coefficients.

This makes the identification problem become non-linear in the parameters since both the Ci
coefficients and the residual e(k) are not known from the beginning. Note that in this description,

the matrix M is used to limit the number of coefficients A, B_, C_ in Eq. (100) due to the term

A + MC, including the case where A + MC is deadbeat. The man-ix M does not play the role of an

observer gain for the system given in Eq. (91), which is now given by K. The algebraic relations

between the coefficients A, B_ of the ARMAX model given in Eq. (106) and the system Markov

parameters Y (k ) = CA_-1B , the observer gain Markov parameters Yu(k ) = CA_-I M are the same as

given in Eq. (28) and Eq. (34). Furthermore, the Kalman filter gain Markov parameters
Yr(k) = CA_-aK can also be computed from

k-1

Yx(k ) = Y't2)(k) + _ Ya)(i)YK(k - i) + Ck (107)
i=l

where Y'C2)(k) -- 0 for k > p. Application of a realization procedure to the combined sequence of

Markov parameters

p(k)=[cak-'B CAI'-IM CA_-IK]

=CAk-_[B M K] , k=l, 2 .... (108)

will realize simultaneously the matrices A, B, C, M, and K.

As a final note, compare the ARMAX model in Eq. (100) with the model considered in Eq.
(98). if the model in Eq. (9-8) is used, but Pl is not sufficiently large, then the residual in the

28



model will be colored. In fact, this colored residual can be modelled by the the Ci coefficients in

the ARMAX model given in Eq. (106).

9. Concluding Remarks

This paper presents an overview of Markov parameters with particular emphasis on their roles
in system identification theory. In discrete-time analysis, the Markov parameter sequences have an
important physical interpretation as they are the unit pulse response functions of a linear system.
The close relationship between the Markov parameters of a system and its various input-output
representations is a basis in system identification theory. In fact, a realization of a linear time-
invariant system can be defined as a factorization of a sequence of Markov parameters into a
specifically prescribed form. When driven by certain specialized inputs, the system sampled
response can be conveniently interpreted as Markov parameters. Recent results in system
identification from general inputs generated renewed interests in Markov parameters. In particular,
the Markov parameters can be extended to include observer Markov parameters and Kalman filter
Markov parameters. These concepts have been found to be quite useful in developing identification
techniques for application in complex flexible structures.
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